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Summary

The reaction of all-frans-retinal and 5-(2,6,6-trimethylcyclohexenyl)-3-methyl-2,4-
pentadienal with amino acids, amino esters and their salts was studied. The structure of
the polyenic imines and iminium salts thus prepared was elucidated with the aid of 'H-
and “C-NMR spectroscopy. The condensation results in an equilibrium between the

imine and its zwitterionic form 7N N/["] - 00H —=— -~ ;l:}/[]‘ 000" 45

H
shown by variable-temperature "C-NMR measurements. Addition ol an inorganic salt
(LiClO,) favours the zwitterionic form. Comparison of the *C chemical shifts of these
species with those obtained from the protonation of the corresponding imino-esters
gave the percentage of the two forms. The species prepared from the amino acids
constitute model compounds, and rhodopsin and bacteriorhodopsin are believed to
exhibit similar behaviour.

Introduction. — Rhodopsin (the visual pigment) and bacteriorhodopsin (the major
constituent of the purple membrane of Halobacterium halobium) have recently been the
subject of much research. Rhodopsin results from the association of 11-cis-retinal with
a protein, opsin, whereas all-trans- and 13-cis-retinal react with bacterioopsin to form
bacteriorhodopsin. For these two pigments, the binding of retinal with the protein
occurs between the carbonyl function of the former and the ¢-amino group of a lysine
fragment of the latter. The primary structure of these proteins has now been com-
pletely elucidated [la, b] and furthermore the retinal has been located at the lysin 216
fragment in bacteriorhodopsin [2] [3]. The investigation of the nature of the binding of
the retinal-protein association has been undertaken by several authors using Raman [4]
[5], IR [6], UV [7] [8] and NMR [9] [10] spectrometry. These studies have shown that
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retinal is attached to the ¢-NH, via an aldimine bond or a protonated aldimine bond
(Scheme 1).

The study of these pigments by NMR spectroscopy is very difficult because of the
problems of solubility and the great complexity of the spectra due to overlapping of the
polyene chain and the aromatic protons of the protein. Therefore it is necessary to
label selectively the different C- or H-atoms [9] [10]. To obtain NMR data on these
species, several authors [11-18] have studied the N-butyl and N-propyl Schiff bases of
retinal and their protonated derivatives (iminium ions). These models exhibit large red
shifts in the UV spectra, indicating a great difference between them and the actual
pigments: e.g. the N-butyl iminium salt of 11-cis-retinal absorbs at 440 nm in MeOH
whereas the maximum absorption for rhodopsin occurs at 580 nm. This phenomenon,
called ‘opsin shift’, has been studied by Nakanishi et al. They have proposed the exter-
nal point charge model, which places a second negative charge near the Schiff base
N-atom in addition to a counter-anion [19-26]. Their conclusions are based on UV
studies of model iminium salts of retinal, including some amino-acid derivatives [27].
The latter seem to us appropriate models in the sense that they possess a potential
negative charge in the neighbourhood of the polyene chain. Furthermore, the reaction
between retinal and amino acids has not been extensively studied. This paper describes
the best conditions for obtaining the imines and iminium salts by Mannich-type reac-
tion and discusses their behaviour using NMR spectroscopy.

1. Mannich Reaction between all-trans-Retinal, 5-(2,6,6-Trimethylcyclohexenyl)-3-
methyl-2,4-pentadienal and Amino Acids. — Scheme 2 lists the synthetic routes used and
Table 1 compounds prepared.

Table 1. Polyenic Imines and Iminium Model Compounds (Y = (/_ )

;50,4
R! R? X~ Compounds
CH,—COOtBu - - A-1 Be-1 A-2 Be-1
(CH,),—COOtBu - - A-1 Be-2 A-2 Be-2
(CH,)s—COOEt - A-1 Be-3 A-2Be3
CH,—COOtBu H A-1 BeH*-1 CI”
A-1B {CH,);—COOtBu H Cr A-1BeH*-2 CI°
(CH,);—COOEt H  CF;CO0™ A-1 BeH'-3 CF,CO0™ A-2 BeH*-3 CF;CO0~
Et0co —{ ) Cloy A-1 BeH*-4 C107 A-2 BeH'-4 ClO;
CH,~COOFt CH, CF;CO0™ A-2 BeH*-5 CF,C00~
CF,CO0™  A-1 BaH'-1 CF,COO~ A-2 BaH*-1 CF;C00~
CH,-COOH H { Y- A-1 BaH'-1Y~ A-2 BaH*-1Y~
CF,COO™  A-1 BaH"-2 CF,CO0O~ A-2 BaH*-2 CF;CO0™
(CHy);—COOH H { Y- A-1BaH"™-2 Y~ A-2BaH'-2 Y~
B CF;CO0™  A-1 BaH*-3 CF,COO~ A-2 BaH'-3 OF;CO0~
A-28 (CH)s~COOH H { Y- A-1BaH*-3 Y™ A-2 BaH'-3 Y~
Cl0; A-1 BaH'-4 ClO; A-2 BaH™4 ClO7
Hooc - { Y- A-1 BaH -4 Y~ A-2BaH*-4 Y~
(CH,);~CO0~ H - A-1 Ba-2 A-2 Ba-2
(CH,)s—COO~ H - A-1 Ba-3 A-2 Ba-3
~00C <) - A-1Bad A-2 Ba4
CH,—COO~ CH, - A-2 Ba-s
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The main problem arises from the relative insolubility of the amino acids and their
salts in organic solvents. Use of hydrophobic anions such as trifluoroacetate, or, better,
the 10-camphorsulfonate anion makes the salts of all the amino acids soluble in CHCl,
or MeOH. It has also been possible to solubilize some amino acids (e.g. proline, g-ami-
nohexanoic acid) in MeOH/H,O solvent mixtures (see the Exper. Part and Table 11).

In the case of the imines ABe, the reaction is achieved by adding molecular sieves
(an operation not necessary in the reactions with BeH*, BaH", Ba). In spite of the
formation of H,0, the equilibrium is completely displaced towards the formation of
ABeH*, ABaH", ABa (if this is not the case a small amount of amino acid is added).
These reactions complete in ca. 24 h at room temperature, but the presence of a big
anion, such as 10-camphorsulfonate, slows the reaction down (see Exper. Part, Table
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11). Tt is possible to isolate the imines ABe and keep them in the refrigerator for
several days; this is not possible with ABeH*, ABaH"* and ABa which must be studied
in the synthetic solution. Some of these solutions remain intact for a day at —10°C at
best. The second section shows that the spectroscopic behaviour of A-1B and A-2B
compounds are similar. The former are generally more stable, especially for the ABa
compounds; some experiments have only been possible with C,-aldehyde derivatives.
The colour of the solutions often indicates the nature of the product formed: the imine
solutions are generally yellow, whereas the iminium solutions are characteristically red
orange to deep red. The model compounds prepared are listed in Table 1.

2. NMR Study of Model Compounds ABe, ABeH*, ABaH"* and ABa (Tables 2-6). -
Because of the great similarity between the derivatives from A-1 and A-2, we used the
following numbering system:

A-2B

The complete assignment of the proton spectra (Zable 2) is easily carried out with
the aid of J(H,H) and by comparison with previous models [18]. The differentiation
between H—C(11) and H—C(12) in A-1 B compounds and between H—C(7) and
H—C(8) in A-2 B compounds is based on the existence of the homoallylic coupling
constant of H—C(7) or H—C(11) with 3H—C(5'). Similarly the “C-resonance signals

Table 2. 'H-NMR Parameters of Imines and Iminium Salts Derived from all-trans-Retinal A-2 and Cs-Aldehyde A-1 at

250 MHz. For numeration of the C-atoms, see Formulae A-1B and A-2B. a and b are N-methylimine and N,N-di-

methyliminium iodide of A-1, respectively; ¢ and d are N,N-dimethyliminium iodide and N-butyliminium trifluoro-
acetate of A-2, respectively. The concentration used was 0.5m; solvent: CDCl;.

H-C(7) H-C®) H-C(10) H-C(11) H-C(12) H-C(14 H-C(15 H-C(N)

a (E) 6.38 6.10 609 - 827 3.39

A-1 Be-1 (E) 6.39 6.03 6.13 821 411

A-2 Be-1 (E) 6.22 6.10 6.12 6.81 6.39 6.16 8.26 4.09

A-l Be-2 (E) 6.40 6.07 6.10 8.25 3.50

3.94

b 7.13 6.48 635 9.18 [ 160

L 477

A-1 BaH™-4 ClO;*) (E) 7.10 6.50 6.40 9.07 282

523

A-1 BeH*-4 C10;%) (E) 7.16 6.50 635 8.75 Y os

g 7.16 6.60 6.53 8.84 {4'75

A-1 Ba-4?) (E) . . . ) 400
3,

¢ 6.57 6.27 6.55 7.58 6.77 6.35 8.76 ; ;i

) (E) 646 6.23 6.29 7.37 6.59 6.86 8.27 3.68

473

A-2 Ba-49) (E) 652 6.26 6.48 7.52 6.68 6.34 8.81 { 403

4.14

A-2 Ba-4?) Z) 652 6.29 6.48 7.48 6.62 6.32 8.90 { o3
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Table 2 (continued)
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3(7,8) 10,11 JA1,12) (4,15 YUH-C@A5),  Solvent T [C)
C—N—-C-H]

a (E) 16.2 93 1.6 CDCl, —-10°
A-1 Be-1 (E) 16.0 9.2 17 CDCl, —-10°
A-2 Be-1 (E) 16.0 11.4 15.2 9.6 1.7 CDCl, —-10°
A-1 Be-2 (E) 16.2 9.3 1.7 cDay, —10°
b 16.0 1.6 CDCly —-10°
A-1 BaH*-4 Cl10;%)  (E) 16.3 11.7 CD;OD  —10°
A-1 BeH*-4 C107%)  (E) 16.3 11.5 CD,0D -I0°
A-1 Ba-4%) (E) 16.2 11.6 CD,0D -10°
¢ 16.0 11.75 14.75 11.5 CD,OD  —10°
d%) (E) 158 1.8 14.7 11.1 CD,CL,  —61°
A-2 Ba-4%) (E) 15.75 11.75 14.5 11.5 CD,0D

CDCY, -10°
A-2 Ba-4%) (Z) 15.75 11.5 14.75 11.5 l (v/v)

)
")

Solvent: CDCl;/CH,0H.
Values for d are taken from [18].

(Tables 3—-5) were assigned by comparison of our results with previous work [11-18],
by the use of coupled, off-resonance spectra, and by running attached-proton-test
(APT) spectra (Fig. 1, 2 and Exper. Part). Some ambiguities remained concerning the
differentiation between C(6) and C(9) for A-2 derivatives and C(5), C(11) for A-1
derivatives. These were resolved by considering the evolution of each on progressive
addition of trifluoroacetic acid (TFA) (see Fig.3 and 4).

The 10-camphorsulfonates (Y~ anion) were prepared to examine the influence of
the nature of the anion on the iminium salts. The substitution of the trifluoroacetate
anion by Y~ does not cause any significant change in the “C-shifts of the polyenic
chain (Tables 4 and 5). Similarly, the nature of the cations has no appreciable influence
on the two anions, which always possess the following *C-parameters:

41,8 18,7

o {CF, = 115.5 ppm: '"J("C, F) = 293.5 Hz

CHLOO 14c00- - 161.2 ppm; 27(*COOF) = 34.7 Hz 4;'8f > 223 6
216. 2641
0

CHZSOS_
46.2

Stereochemistry of the Imines AB and of the Iminium Salts ABH*. The analysis of
NMR parameters, (essentially J(H,H), see Table 2') proves that reactions involving the
carbonyl group do not alter the structure of the polyene chain, which remains all-frans
for both aldehydes.

The addition reaction of amino esters always produces the (E)-imine diastereo-
isomer ABe, whereas the same reaction with the salts of amino acids and esters gives a
(E)/(Z)-iminium salt mixture ABaH*, ABeH" ((E£) being the major product).
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Fig.2. "C-NMR spectra of A-2 Ba-4 zwitterion
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Table 6. Coupling Constants ['J(°C,H) in Hz] of Some Imines and Imninium Salts Derived from the Aldehyde A-1
and A-2 (for experimental specifications see Tables 3, 4 and 5; a and b are N-methylimine and N,N-dimethyl-
iminium iodide, both derived from the aldehyde A-1)

Compounds L(C(14),H) L (C(15),H) L(C(N),H)

a 154.0 155.0 137.0

A-1 Be-1 156.0 154.0 136.0 (CH;—N)

b 162.0 174.0 145.0 (CH,),N

A-1 BeH"™-1 CI” 162.0 176.0 145.0 (CH-N)

A-1 BeH™-4 C10; 162.0 176.0 153.0 (CH-N)
144.0 (CH,~N)

A-1 BaH*-2 CF,COO™ 163.0 173.0 144.0 (CH,N)

A-1 Ba-4 163.0 171.5 149.0 (CH-N)
144.0 (CH,~N)

A-2 BaH'-4 C107 160.0 179.0 150.0 (CH-N)

144.0 (CH,N)

The Mannich reaction in the presence of primary and secondary amino acids Ba
results in the (E)-isomer and an (E)/(Z)-mixture of the zwitterionic isomers ABa, re-
spectively. If the reaction is run under mild conditions, the protonation of (E)-imines
ABe, only results in (E)-iminium salts. The (E)/(Z)-structure of the C=N bond was
elucidated by using the nuclear Overhauser effect as shown in Table 7. In the N,N-di-
methyliminium salts b’ and ¢, the lower-field CH,-group remains in the (£)-position.
This is corroborated by the lanthanide induced shift. Lanthanide salts can complex the
anions [28]. Such associations are able to transmit induced shifts through space if the
anion and cation are very close to one another. Increasing amounts of (+)-tris[3-(hep-
tafluorobutyryl)-p-camphoratoleuropium III, [(+)-Eu(hfbc),] added to CHC],-solutions
of b’ result in the shifts represented in Fig.5. The shift variations of N—CH,(E) (lower
field) are similar to those of H—C(15) while N—CH;-(Z) and H—C(14) shift variations
lie on the same straight line. This graph also indicates that the complexed bromide
anion is probably located between N—CH,-(E) and H—C(15). The bromide rather than
the iodide was preferred for this experiment because of its size; when complexed with
(+)-Eu(hfbc),, the larger iodide ion produces lower induced shifts than the bromide
ion.

Table 7. NOE Experiments on Imines and Iminium Salts (for solvents and concentrations, see Exper. Part). a, b
and b’ are N-methylimine, N,N -dimethyliminium iodide and bromide, respectively, all derived from A-1; ¢ is the
N,N-dimethyliminium bromide derived from A-2.

Compounds Irradiated protons Intensity enhancement
on H-C(15) [%]
a N—CH; 19
A-1 Be-1 N-CH, 10
A-1 BaH*-3 CF,C0O0~ N—-CH, i1
b’ N—CH; (3.94 ppm) 13
N—CH; (3.60 ppm) 2
A-2 Be-3 N-CH, 10
A-2 BeH'-3 CF,COO~ N—CH, 12
¢ N-CH; (3.7] ppm) 13

N—CH; (3.51 ppm) ~ 0
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Ab(ppm)
| H—C(15)
HR B+ cgar
10F w 2 % "L/ ’
CH3
Iy
N-CHs—(£)
0751
)
=]
N-CHy—(Z) ®
(] H-C(14) 0
A
050+
»
A
3 H~C(13")
A
(]
o
H-C(12)
+
Q25' ' a H-C(11)
. +
Y
+

0 07 02 03
Fig.5. 'H chemical shift variations for iminium bromide (b") vs. molar fraction of (+)-Eu(hfbc);. p = Number of
moles of (+)-Eu(hfbc);/Number of moles of salt.

The assignment of C N-methyl group resonances (Z and E) in N,N-dimethyl-
iminium salts b and ¢ is carried out by considering the y-effects. There is a strong
y-interaction between C(14) and N—CH,-(Z). Therefore N—CH,~(E£) must be situated
at a lower-field position than N—CH,~(Z). The (E,Z) structures of proline (Ba-4) de-
rivatives are determined using the nature of this effect. Considering for example A-2
BaH*-4 ClO,; the N—CH—COOH resonance is located at a lower frequency for the

117.6 ppm 00 PPM

c1o"1 COOH -
)\4/\+ 68,4 M4
1 €———— 08,4 ppm 4 +

IS 1375 SN \‘ N WS\(NO

11841 ppm 63.2
5045 ppm

A-2 BaH'4 ClO, A-2 BaH*4 ClO,
(E)-isomer (major product) (Z)-isomer (minor product)
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(Z)-isomer than for the (E)-isomer. The reverse situation is encountered for the
N—CH, resonances.

Structural Proofs of the Zwitterionic Models ABa. The most stable iminium models
are those formed from proline (Ba-4). This relative stability is probably due to the
absence of a labile hydrogen on the N-atom. The "*C chemical shifts of A-1 BaH*-4
ClO; or A-2 BaH*-4 ClO; and those of A-1 Ba-4 or A-2 Ba-4, the *C parameters are
very similar. In this case, formation of imines is impossible, the first identifiable species
being the addition product, (d¢(s, = 99.0 ppm) which immediately loses one molecule of
H,O (Scheme 3).

Scheme 3
_H
z L))‘ _ _ \
O"H + NW = N\(Y N\]/\(
+ + ST
000 000 HO HOOD HO

The addition of perchloric acid to a solution of A-1 Ba-4 (E,Z) produces another
compound which possesses the same “C-NMR parameters as A-1 BaH'-4 Cl0, (£, Z).
The reaction of A-1 or A-2 with primary amino acids, 4-aminobutyric acid (Ba-2) or
6-aminohexanoic acid (Ba-3) follows a similar pathway, but the variable temperature

IS )\/\; _(@i-000” 7\% )\/\N _ (@,);Co0H

|
H

PC chemical shifts of the zwitterions obtained reflect the equilibrium between the imine
and the iminium form. The “C chemical shift variations of A-1 Ba-3 vs. temperature
(between 15°C and —50°C, Fig.6) give a straight line, the lower the temperature, the
higher the chemical shifts of the odd-numbered C-atoms and the lower those of the
even numbered C-atoms of the polyenic chain (7Table 8). At lower-temperatures the
zwitterion is the favoured form (®C-NMR chemical shifts are then near those of the
iminium salts). The same experiment conducted on the A-2 Ba-4 zwitterion shows no

Table 8. *C Chemical Shift Variations (in ppm) with Temperature for the A-1 Ba-3 Zwitterion (for experimental
conditions see Table 4)

T(K) ) C(6) ca ca2) C(13) ca4) c(19) C-N
288 133.0 137.5 134.7 136.3 151.5 1229 160.8 58.9
273 133.2 137.5 135.4 136.3 152.9 1225 161.3 58.3
263 133.5 137.5 135.9 136.3 153.9 122.1 161.7 57.7
253 1338 1375 136.5 136.2 1548 121.7 161.9 572
243 134.1 137.4 136.9 136.2 155.7 121.2 162.1 56.7
233 1342 137.4 137.3 136.1 156.6 120.8 162.4 56.2

223 134.6 137.4 137.7 136.0 157.5 120.5 162.6 55.8
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Ade A-18a-3

ij/\/v\ﬁ/(cv\z)sﬂcov
|
5

H
N /(CHz)S— COOH

c(13)

C(11)

C(15)
C(5)

A

-2
C(14)
-3 c(Ny
41
T(K}

563 273 263 253 243 233 223

Fig.6. *C chemical shift variations [ppm] vs. temperature for A-1 Ba-3 zwitterion. Solutions: 0.5M in CDCly/
CH;0H/H,0; 43¢ [ppm] = é¢ (288 K) — d¢ (T).

appreciable variation of the "C-NMR chemical shifts and corroborates the existence of
the equilibrium for A-1 Ba-3 and analogous species. Further proof is provided by
adding a MeOH-solution of salt, such as lithium perchlorate to A-1 Ba-3, since an
ionic species should stabilize the iminium form of A-1 Ba-3 as shown in (Scheme 4).

Fig.7 and Table 9 clearly illustrate the validity of this idea; upon addition of lith-
ium perchlorate the C chemical shifts move towards those of the pure iminium form.
The dependence of the *C chemical shifts on the lithium perchlorate concentrations do
not obey linear curves and seem to reach a plateau when more than three moles of
lithium perchlorate per mole of A-1 Ba-3 are added to the solution. Conversely, the
addition of lithium perchlorate to a solution of the ‘pure’ iminium zwitterion A-1 Ba-4

Scheme 4
c10,

- + - 4
+ CH,)-.Ct Li Cl
E/K/\N/( 2)500 + 1CO4 . )\/\
| = 9

H

-
» (C1;)50007L3
N
H

44
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does not induce any effect on the *C-shifts. These experiments have not been extended
to the retinal derivative A-2 Ba-3 because of its high instability. Nevertheless the be-
haviour of A-2 derivatives is likely to resemble that of the A-1 derivatives.

To obtain information about the percentage of the ionic zwitterion species A-1
Ba-3 and A-2 Ba-3, we plotted the variation in chemical shift of the C-atoms of imines

-1

-3

| A8 ppm

(CH3). —COO~
3 ;l/( 2)5 Co

n (
2 1% |
H

1

2

3

c(13)

c(11)

C(5)

Cc{15)

N-C
c(14)

F

Fig.7. *C chemical shift variations [ppm] vs. molar fraction of lithium perchlorate for the A-1 Ba-3 zwitterion.
T = —10°, solution: 0.5M in CD;0D/H,0. p = Number of moles of LiClOy/Number of moles of A-1 Ba-3.

Table 9. The Influence of Lithium Perchlorate on the 3 C Chemical Shifts (in ppm) of the A-1 Ba-3 Zwitterion.

= —10°; solvent: CD;0D (0.5M); p* = Number of moles of LiClO,/number of moles of A-1 Ba-3.

p* C(5) C(6) C(11) C(12) C(13) C(14) C(15) C-N
0 133.5 137.4 1359 136.1 157.0 122.0 163.0 56.0
0.47 134.0 137.4 136.5 136.0 158.3 121.7 163.4 55.6
0.94 1343 137.3 136.9 136.0 159.2 121.2 163.6 55.2
1.42 134.6 137.2 137.4 135.9 160.0 120.8 163.7 54.8
1.88 134.8 137.2 137.7 135.9 160.7 120.6 163.9 54.5
2.82 135.2 137.1 138.4 135.9 161.6 120.1 164.2 54.3
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A-1 Be-3 and A-2 Be-3 vs. acid concentration. This was achieved by gradual addition
of TFA until equimolar quantities had been reached. Fig.3 and 4 illustrate the lincar
curves that were obtained for each C-atom. At this temperature the NH H-exchange
was fast enough on the NMR time scale to observe the averaged values of chemical
shifts, which can be expressed by the following relationship:

d.= x 9, (iminium) + (1 — y) J, (imine)

X = molar fraction of iminium form

We verified that stoichiometric amounts of TFA added to A-1 Be-3 or A-2 Ba-3
solutions produce NMR spectra identical to those of A-1 BeH*-3 CF,COO™ or A-2
BeH*-3 CF,COO in the same solvent and at the same temperature, if these salts are
prepared directly from the trifluoroacetate salt of ethyl 6-aminohexanoate BeH*-3. It is
therefore probable that the second term of the above equation is not equal to zero even
if the temperature is —50°C. In fact the addition of an excess of TFA produces new
shift variations but these are difficult to interpret owing to the partial decomposition of
the species present. However, it is possible to obtain some information about the y
value for the ABeH*-3 CF,COO" salts by considering the chemical shifts of C(13,11,5)
and C(13,11,9,7) of A-1 BeH*-4 ClO; and A-2 BeH"-4 ClO; respectively. The latter
being tertiary iminium salts, are not subject to H-exchange and furthermore the C-
atoms chosen are not subject to a-, -, or y-effects due to the additional N-carbon
atom. The shift differences observed between ABeH*-4 Cl10; and ABeH*-4 CF,COO~
for the C-atoms mentioned thus represent the imine participation at —50°C, a hypothe-
sis apparently corroborated by the close fit of the shift values to the curves (see Fig.3
and 4). Calculations show that the complete protonation of A-1 BeH*-3 CF,COO™ and
A-2 BeH"-3 CF,COO™ occurs at p-values of 1.15 and 1.12, respectively (p = number of
TFA moles/number of imine moles). The curves in Fig.4 and 5 may be used as stan-
dards in order to estimate the equilibrium constant between the imine and zwitterion
for A-1 Ba-3 (or A-2 Ba-3) if the intrinsic “C shift differences between a ‘pure’ ABa
zwitterion and its analogous ABeH" derivative can be evaluated.

Comparison of ®C chemical shifts of A-2 Ba-4 with A-2 BeH*-4 ClO; and of A-2
Ba-5 with A-2 BeH"™-5 CF,COO™ (Ba-5 = N-methylaminoacetic acid) indicates that in
each case, the electronic and steric differences between the two compounds being com-
pared have an almost identical effect (Table 10). A-1 Ba-4 and A-1 BeH*-4 derivatives

Table 10. The Difference (48) in ’C Chemical Shifts Observed between ABeH" Iminium Ester Salts and the Analogous
Zwitterions ABa ((E)-structures) (T = —50°). 4dc = 6c (ABeH™) ~ d¢ (ABa) in ppm (see Tables 4 and 5).

C(5) C() C7) CEB® CO Ca0 Cal)y Cc12) Ccu3) C4 Ccas N-c

- +— "
A-2 BeH™-4 C10] }+0.5 0 +0.6 +03 +13 404 +16 +04 +34 —02 +14 3.1

A-2 Bad

s v
A-2 BeH™-5 C10; }+0.6 01 +05 404 +12 +05 +17 402 429 0  +13 —32
A2 Ba-5
- +— —
A-1 BeH'™-4 CF,COO }+o,4 +0.1 14 402 +31 0  +18 -31
A-1 Ba-4

" 46n_c = for the carbon atom in the (E)-position.
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exhibit similar behaviour. Its seems reasonable to alter the shifts of the zwitterionic
species, in order to facilitate comparison of their spectra with those of the iminium
ester derivatives A-1 BeH*-3 CF,COO™ and A-2 BeH*-3 CF,COO™. The new shift
values thus obtained for the zwitterions are illustrated in Fig.3 and 4. Nearly all the
shifts of the C-atoms of A-1 Ba-3 and A-2 Ba-3 lic on a straight line. The molar
fraction y of the iminium form can then be easily deduced and the values calculated
using this method are approximately 0.68 (T = —50°C) and 0.44 (T = +15°C) for A-1
Ba-3 and 0.72 (T = —50°C) for A-2 Ba-3. These values are only approximate as the
reference curves were established in CDCI,, whereas the shift measurements for A-1
Ba-3 and A-2 Ba-3 were determined in a mixture of CH,;OH, H,0 and CDCl,.

Conclusion. — These results demonstrate very clearly that the “C-shifts of the
polyene chain are very sensitive, depending particularly on the protonation of imine
derivatives and the equilibrium observed in the ABa species. We believe that rhodopsin
or bacteriorhodopsin exist in similar equilibria and that the presence of an external
acid is not a pre-requisite for the iminium binding. This hypothesis has already been
used to explain unusual UV-spectral changes of the rhodopsins of Euphausia superba
[29]. The imine bond may be protonated by the labile protons of the apoprotein. The
models compounds synthesized do not provide any further information about the ‘op-
sin shift’ since their chemical shifts are not very different from, for example, those of
the N-butylretinal iminium salts. The result from addition of lithium perchlorate to
zwitterionic solutions is supported by the work of Nakanishi et al. [19-27] on the influ-
ence of a counter-ion on the electronic charge distribution of the polyene chain. The
‘opsin shift’ could be understood by studying the PC chemical shift variations of C(13)
of rhodopsins upon systematic modifications (pH, presence of a counter anion eic.).
This C-atom is the most sensitive of all the polyenic chain C-atoms. (The d¢,, of a
retinylidene amine and the dq,; of its corresponding iminium salt appear 20 ppm
apart.) In this case the use of the retinylidene moiety enriched with *C at the C(13)
position is obviously necessary, and is certainly possible [30]. Two similar experiments
have been undertaken [9] [10], both involving retinals (embedded in rhodopsin or bac-
teriorhodopsin) enriched with *C at C(14) and C(15)-positions. This was probably not
the best choice, because these C-atoms exhibit relatively weak variations.

The authors are very grateful to Dr. M. Lees and to C. Meir for valuable language criticism.

Experimental Part

Syntheses. — Starting Materials. -- Aldehydes. The all-trans-retinal was a gift from AEC Soci¢té de Chimie
Organiqgue et Biologique (Commentry — France). C,5-Aldehyde was prepared by the reaction of f-ionone with
methyl diethylphosphonoacetate (31] followed by reduction and oxidation reactions [32].

Amino Acids and Derivations. Ethyl amino esters were prepared from amino acids with EtOH in the pres-
ence of SOCI, [33]. ¢-Butyl amino esters were used in some cases because they are more stable than the ethyl
esters. After protecting the amine function with the phthalimido group, the resulting amino acid was condensed
on isobutylene in acidic media [34] [35]. The phthalimido group was then removed in the presence of aqueous
MeNH, [16].
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Salts BaH" and BeH™. Equimolar amounts of the amino acid (or ester) and the acid HX were successively
introduced into a flask containing H,O (30 ml for 0.1 mol). The mixture was stirred for "z h at r.t. HO was
eliminated under reduced pressure and the resulting salt was recrystallized in EtOH, EtOH/CHC; or in MeCN.
Polyenic Imino Esters and Iminium Salts ABe, ABeH", ABaH"*, ABa. — Preparation of Imines ABe. A solution of
the amino ester (1072 mol) in 5 ml of Et,0 was slowly added to a solution of the polyenic aldehyde (1072 mol)
in 15 m] of Et,O at r.t. under a stream of dry N,. Molecular sieves (3A), 20 g were introduced into the aldehyde
solution prior to the addition of Be to ensure the completion of the reaction. The mixture was stirred for 2 h
and filtered. The solvent was eliminated under reduced pressure and the imines thus prepared were used without
further purification. Owing to their instability the solutions required were prepared immediately and stored in
the refrigerator.

Preparation of the Iminium Salts. — Treatement of the Imines ABe with Acid. The ABeH" salts were pre-
pared by the addition of a IM solution of acid in the required solvent (CHCl;, Et,0, ete.) to the same volume of
a M imine solution (in CHCI;, Et,O or MeOH) at —40°. NMR spectra of the resulting solutions were run
without further purification.

Preparation of Iminium Salts ABeH", ABaH" and ABa. Because of their instability, these salts were pre-
pared immediately prior to running their NMR spectra as follows: preparation of a 1.0m solution of the polye-
nic aldehyde (in CDCl;) in a NMR tube; preparation of a 1.1M solution of the Ba, BaH™, or BeH" in a second
tube, (in MeOH or MeOH/H,0, details in Table 11). 1t was necessary to dissolve the amino acid in H,O first
and then to introduce MeOH for the less soluble compounds. In each case these solutions were added to the
aldehyde solution as quickly as possible. The reactions were complete in ¥z to 24 h (Table 11).

Table 11. Conditions Allowing Complete Reactions between Compounds ABa, ABaH" and ABeH" (1 ml of 1.10M
solutions) and the Polyenic Aldehydes A-1 and A-2 (1 m} of 1M solutions in CDCly). Y™ = 10-camphorsulfonate

anion.
Type of amino acid Relative solvent volumes Reaction times [h at r.t.]
C,s-Aldehyde all-frans-retinal
A-1 A-2
NH,—(CH,),—COOH Ba-2 CH,OH/H,0 (0.8/0.2) 15 2.0
NH,~(CH,);—COOH Ba-3 CH,0H/H,0 (0.8/0.2) 1.5 2.0
: : ~COOH
f‘; Ba4 CH;0H 0.75 0.75
H
CH,;-NH—CH,—COOH Ba-5 CH,0H/H,0 (0.8/0.2) 40 30
NHi-CH,—COOH CF,C00"~ CH,0H/H;0 (0.8/0.2) 4.0 4.0
Y™ BaH*-1 CH,;0H/H,0 (0.8/0.2) 8.0 8.0
NH3—(CH,);—-COOH CF,CO0™ CH,0H 4.0 4.0
Y™ BaH"-2 CH;0H 8.0 8.0
NHi—(CH,)s—COOH  CF;CO0™ CH;OH 10.0 10.0
Y™ BaH'-3 CH,;0OH 15.0 15.0
: Lj\ COOH clo; CH,OH 0.5 10
/ N\ Y™ BaH*-3 CH,OH 24.0 24.0
i
NHi-(CH,);—~COOEt  CF,COO~ BaH*-3 CH;OH 40 40
+
N7 COOEt clo; BaH'-4 CH,0H 0.5 0.5
/' \
H H

NMR Experiments. — 'H-NMR Spectra. The 'H-NMR spectra were run in the continuous wave mode at
100 MHz ( Varian XL 100-4) and at 250 MHz (Cameca spectrometer); 0.5M solutions were used in the solvents
indicated (Table 11). NOE measurements were carried out on solutions which had been carefully filtered and
degassed under an Ar. The irradiation power required was 90 dB on the XL 100 spectrometer.
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BC.NMR Spectra. The *C-NMR spectra were recorded in the Fourier transform mode on a Bruker WH
90 spectrometer at 22,635 MHz. The solutions were the same as those used for "H-NMR spectra. Parameters:
SW 6,000; AT = 0.679 s; D.E. = 4 ms; number of scans = 3000 to 5000.

The non-decoupled spectra were recorded with the aid of the gated-decoupling technique (delay =1 s).
Several off-resonance spectra were run for the same compound at different values of the irradiation frequency
(irradiation power = 0.5 W).

Parameters used for the attached proton test spectra:

90° 180°

13 acquire signal
lC H H { t,=2s

t,= 1/J(*C,H) = 6 ms

— = — 2 —|— 2~
1Hlj Decouple

The t, time 1// was chosen as a mean value corresponding to 'J(*3C,H)-values of 125 to 160 Hz.

The >C-shift variations of A-1 Be-3 or A-2 Be-3 imines observed upon the addition of TFA were measured
by studying the >*C-NMR shifts of each of the solutions described in Table 12. The mixtures were prepared at
—30°.

Table 12. Preparation of the Solutions Used for the Study of the **C-Shift-Variation of Imines A-1 Be-3 and
A-2 Be-3. (The volumes described above were added to 1 ml of a 1M solution of the relevant imine in CDCl; in
each case, to obtain the desired p-value.) p = Number of moles of TFA/Number of moles of ABe imine.

p Volume [ml] of the TFA-solution Volume [ml] of
IM in CDCl; CDCl; added

0 0 1

0.1 0.1 0.9

02 0.2 0.8

0.3 03 0.7

0.4 0.4 0.6

0.5 0.5 0.5

0.6 0.6 0.4

0.7 0.7 0.3

0.8 0.8 0.2

0.9 0.9 0.1

1 1 0
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